LESSONS LEARNED IN CONDUCTING CYBER SECURITY VULNERABILITY ANALYSIS

by Paul Baybutt, Primatech Inc.

Presented at the ISA Expo Technical Conference on Manufacturing & Control Systems Security, Chicago, October 25, 2005 <u>paulb@primatech.com</u> <u>www.primatech.com</u>

OVERVIEW

- Cyber security and the protection of computer systems
- Managing cyber security and risk assessment
- Cyber security vulnerability analysis (SVA)
- Lessons learned

CYBER SECURITY FOR MANUFACTURING AND PROCESS PLANTS

ASSETS	INTENTS
Stored information	Obtain, corrupt, damage, destroy or prohibit access
Computer systems	Disable
Controls	Manipulate

PROTECTION OF COMPUTER SYSTEMS

- American Chemistry Council's (ACC's) Responsible Care[®] Security Code of Management Practices
 - Requires ACC members to perform cyber SVAs for their facilities
 - Part of a risk-based management system

Attackers + Intent

COMPUTER SYSTEMS TO CONSIDER

- Manufacturing and process control
- Production management
- Safety systems operation
- Access control
- Information storage
- Data historian
- Financial systems
- Order entry

7

- Inventory management
- Warehousing
- Maintenance
- E-commerce
- Communications
- Power and other utilities
- Transportation
- Etc.

Disgruntled employees

POSSIBLE ATTACKERS - INTERNAL

- Former employees
- Contractors
- Vendors
- Customers
- Visitors
- Etc.

8

POSSIBLE ATTACKERS - EXTERNAL

- Hackers
- Terrorists
- Criminals
- Competitors
- Activists
- Etc.

POSSIBLE INTENTS

- Damage
- Destruction
- Disruption
- Denial of use
- Theft
- Diversion
- Manipulation
- Contamination

- Spoiled products
- Shutdown
- Release
- Fire
- Explosion
- Runaway reaction
- Etc.

SECURITY VULNERABILITY ANALYSIS (SVA)

- Identifies ways in which deliberate acts could cause harm (*threat scenarios*)
 - How flaws or weaknesses expose a system to attack

VULNERABILITIES IN COMPUTER CONTROL SYSTEMS

- Network access
- Dial-up modems
- Unauthorized HMI use
- Wireless networks
- Partner networks
- Inadequate physical protection
- Unattended workstations
- Accessible cabling

ELEMENTS OF A CYBER THREAT SCENARIO

"The only real mistake is the one from which we learn nothing." John Powell

CSVA-SB WORKSHEET

SECTOR: (1) PLANT COMPUTER SYSTEMS										
<u>, , , , , , , , , , , , , , , , , </u>		CONSEQUENCES	COUNTERMEASURES	S	L	R	RECOMMENDATIONS	BY		
Hackers interfere with production	1. Unauthorized network access ∨ia Internet and telnet to control system	1.1. Minor	 1.1.1. Virtual Private Network 1.1.2. Authentication 1.1.3. Corporate perimeter firewalls 				1.1.1. Consider installing internal firewalls or access control devices between the process control and business networks	IT -		
			 1.1.4. Intrusion detection and monitoring of firewalls 1.1.5. Anti-virus software on servers and all desktops 				1.1.2. Consider installing network Intrusion Detection System	IT		
	2. Unauthorized modem	2.1. Release of chemicals	2.1.1. Policy prohibits unauthorized modems 2.1.2. Few indi∨iduals ha∨e administrati∨e		3	С	2.1.1. Promote awareness and communication of policy on modems	OPS		
			pri∨ileges to install modems				2.1.2. Re∨iew frequency and type	IT		

LESSONS LEARNED - CSVA

- Analyze corporate computer systems first and separately
- Approaches familiar to plant personnel work best
 - Scenario-based

- Facility subdivision
 - Treat each manufacturing process since vulnerabilities and consequences of attacks will vary
 - Useful to take each control system and analyze the various parts of the process it controls
- Recognize commonalities between control systems and processes but also address differences
 - Avoid repetition

Copyright © 2005, Primatech Inc., All rights reserved.

Consider addressing unintentional attacks

- Often mentioned by CSVA team members
- May not have been addressed in PHAs

Also, consider addressing physical attacks

- Sometimes not addressed in physical SVAs or only to a limited extent
- Consider dividing insiders into "highly skilled" and "normal skilled" groups

- Sometimes obvious countermeasures have not been taken, e.g.
 - Screening personnel
 - Firewalling control systems
 - Air gapping safety instrumented systems
 - Eliminating or controlling/securing modems
 - Using dumb terminals
 - Managing portable computer storage media
 - Etc.

Initial self-assessment using checklists is valuable

- Countermeasures must be acceptable to affected parties for them to be successful
 - E.g. process operators may be unwilling to use passwords
- Countermeasures must also be compatible with the existing facility
 - E.g. a desired new intrusion detection system may not be capable of implementation on a legacy system

- CSVAs create a new awareness of cyber security for participants
- Studies help companies develop policies for implementation of new systems
 - Learn from mistakes found by performing CSVAs

Copyright © 2005, Primatech Inc., All rights reserved.

LESSONS LEARNED – RISKS

- Risk from internal threats is often high
 - Ease of access
 - Lack of controls
 - Knowledge of personnel
 - Target likelihood
- Access controls are vitally important
- Inadequate physical protection of cyber facilities is not unusual
- Importance of basic protection measures such as firewalls for control systems has been recognized
 - Still awaiting implementation in some cases

LESSONS LEARNED – ENABLERS

- Lack of awareness by management and plant personnel
- Infrequent changes in network access controls
- Use of unauthorized storage media, files and programs

Copyright © 2005, Primatech Inc., All rights reserved.

SUMMARY

- Significant number of CSVA studies has been performed
- Many more studies will be performed in the future
- Lessons learned from initial studies should be shared
 - Help ensure efficient and effective future use of CSVA methods

FURTHER INFORMATION

Technical papers on cyber and process security:

www.primatech.com

Contact info:

paulb@primatech.com

Team membership

 Process engineer and network / control system engineer are key participants

Key reference documents

- Process drawings and computer system diagram
- Use a standard format for CSVA worksheets and reports

OTHER LESSONS LEARNED – CSVA (CONTD.)

- Use standardized checklists to assist the analysis
 - Attackers
 - Intents
 - Vulnerabilities
 - Consequences
 - Countermeasures

OTHER LESSONS LEARNED – CSVA (CONTD.)

- List global countermeasures separately
- Risk ranking scheme should provide sufficient discrimination between scenarios
- Duration of studies averages a few hours per process