CHALLENGES IN USING LOPA TO DETERMINE SAFETY INTEGRITY LEVELS (SILS)

by Paul Baybutt

paulb@primatech.com www.primatech.com

Presented at the American Institute of Chemical Engineers 10th Global Congress on Process Safety New Orleans, Louisiana March 30 - April 2, 2014

PrimaTech

OVERVIEW

- SIL determination
- LOPA and SIL determination
- Issues in using LOPA for SIL determination
- Procedure for SIL determination using LOPA

Example

PrimaTech

SIL DETERMINATION

- IEC 61511 / ISA 84 requires the determination of SILs for SIFs in SISs
 - Increasingly accomplished using LOPA
- Estimates of risk levels for a process are compared with risk tolerance criteria
 - SIL required to close a gap is specified
- SIFs protect against specific hazardous events
 - Standard calls for risk tolerance criteria to be established for them

LOPA AND SIL DETERMINATION

- LOPA calculates the risk of individual hazard scenarios
- Only overall facility risk is meaningful
 - Allocated to individual hazard scenarios
 - Scenario risk estimates are compared with allocated criteria
- Sometimes hazardous events are used
 - Risks of scenarios that produce the same hazardous event are aggregated

ISSUES IN USING LOPA FOR SIL DETERMINATION

- Hazardous events and hazard scenarios cannot be defined invariantly
- Allocation of facility risk tolerance criteria to scenarios or events is problematic
- LOPA is susceptible to errors in using risk tolerance criteria

BENCHMARKING LOPA

- UK HSL / HSE analyzed seven representative LOPA studies
 - Submitted by operators of Buncefield-type sites that store flammable liquids
- Multiple inconsistencies and problems found
 - Including confusion over risk tolerance criteria
- Majority of studies were carried out by consultants

Ref. A review of Layers of Protection Analysis (LOPA) analyses of overfill of fuel storage tanks, HSE Books, 2009.

PROCEDURE FOR SIL DETERMINATION USING LOPA

- Use a risk model that employs facility risk tolerance criteria
- Aggregate the risks of individual scenarios
 - For comparison with facility risk tolerance criteria
- Check that risk to receptors has been allocated equitably within and across facilities
 - Ensure no processes, areas, units, process modes, etc. contribute disproportionately to risk

PrimaTech

Copyright © 2014, Primatech Inc., All rights reserved.

STEPS IN THE PROCEDURE

Step 1. Define receptors at risk

- Usually people onsite and offsite, and the environment
- Step 2. Determine type of risk to use
- Both individual risk and societal (group) risk

PrimaTech

Step 3. Determine form of risk to use

- Geographical
- Actual

Step 4. Specify consequence severity levels

 For people, impacts ranging from fatalities to first-aid cases may be possible

- Step 5. Specify risk tolerance criteria for each type of receptor
 - Specify correct type of criteria
 - Comparison of group risk estimates with criteria for individuals is incorrect
 - Group risk can be calculated for the public and facility personnel separately, or in combination
 - Pair with the correct risk tolerance criterion

PrimaTech

Step 6. Determine offsets to risk tolerance criteria

- Facility risk tolerance criteria address all hazards
 - PHA addresses only major hazards
- Criteria should be offset to account for casualties from excluded sources
 - Offsets can be significant
- PHA studies are incomplete
 - Conservative offset should be applied

- Step 7. Specify risk tolerance criteria for consequence severities
- Available reference criteria are for fatalities
- Criteria for injuries to people can be developed using the equivalence concept
 - Equivalences are debatable
- Accidents that produce fatalities can produce accompanying and more numerous injuries
 - Significant component of the harm

Step 8. Decide on risk allocations and scaling

- Both individual and group risk tolerance criteria can be allocated to receptors within a facility
 - Some companies allocate group risk across all their facilities
 - Can scale the allocation of risk to a facility
 - According to a measure of the number of operations and size

Step 9. Identify hazard scenarios

- Typically obtained from PHA studies for a process
 - Include risk to receptors from other contributing processes

Step 10. Calculate scenario risks

- All scenarios protected by a SIF must be evaluated
- Scenarios not protected by a SIF may be protected by other means
 - Still make a contribution to the risks of a process
 - Must be included in the risk model

Step 11. Calculate individual and group risks

- Combine scenario risk estimates
- Risks of all scenarios that could impact an individual contribute to individual risk
 - Regardless of the number of people impacted by the scenario
- Calculation of group risk begins with groups of one

PrimaTech

Step 12. Make risk comparisons

- Estimates and criteria for the overall facility
- Allocations to receptors from applicable sources

Step 13. Formulate risk reduction measures

- Any one safety function may impact the risk of multiple hazard scenarios
 - And across its operating modes
- Risk model that incorporates linking of safety functions is needed

PrimaTech

Step 14. Update PHA and LOPA Studies

- Reflect any changes made to the process
- Use risk model that incorporates all hazard scenarios for the process

EXAMPLE OF USING LOPA TO DETERMINE SIL'S

- Toluene storage and charging process
 - High level shutdown system separate from the BPCS
- Various other safeguards are present
 - Some of which are credited as independent protection layers (IPLs)
- Two modes of operation
 - Tank filling and transfer
- Hazard scenarios may result in fires and explosions
- Scenario and facility risks were calculated using LOPAWorks®

EXAMPLE OF LOPA WORKSHEET FOR A HAZARD SCENARIO

Number	1											
Description	Γank level transmitter fails and overfill tank, TK-104, with fire and employee impacts.											
Process	Foluene Storage and Charging											
Process Mode	■ Tank filling											
Consequence	Description Type Level											
	Overfill tank, TK-104											
Hazard Type	® Fire				₹							
Events		Item		Туре	Value							
	Initiating Event				Frequency							
	Level transmitter, LT TK-104,	fails to detect high leve	el	EQP	1×10 ⁻¹							
	Enablers (regular, at-risk facto	rs, and conditional modifie	ers)		Value							
	Time in tank filling mode			ARF	1×10 ⁻¹							
	Lack of PM on level transmitte	er LT TK-104		REG	5							
	Probability of ignition			CM	5×10 ⁻¹							
	Probability of personnel in aff	ected area		CM	5×10 ⁻¹							
	Probability of harm from expo	sure		CM	1							
	Independent Protection Lay	ers			PFD							
	Be High level shutoff for TK-10	4		® <mark>SIF</mark>	囤 1×10 ⁻¹							
	■ Operator action to stop pure	np, P-100		⊡ HUM	囤 1×10 ⁻¹							
	Safeguards (non-IPL)											
	■ Plant fire brigade			в HUM								
Summary	Item Value											
	Frequency of Mitigated Consequence 1.3×10 ⁻⁴											
LOPA Recommendations	Recommendation	By		Due Da	ate							
	<no for="" recommendations="" td="" the<=""><td>e scenario></td><td></td><td></td><td></td></no>	e scenario>										
Notes	<no for="" notes="" scenario="" the=""></no>											

TOTAL RISK FOR THE PROCESS

Ma	ain O	ptions Pro	ject	Sessions	LOPA	LOPA Form	LOPA She	et Lists	Sun	nmatio	n Reports						
•	🕶 Risk	Summatio	on Ty	pes													
1	Гуре:	Conseque	ence ty	pes												•	
ş	Show:	, I All															
5	- Risk	Summatio	ons														
[Con	sequence Ty	pe	Conseq	uence Lev	/el Scenario	Count	Frequenc	y	F	Risk Tolerance	R	isk Reduction Required	Risk	Reduction Fa	octor	
	EMP			1		6	1.7>	10 ⁻⁴		□ 1×10 ⁻	3	None		None			
				2		9	3.5×	10-4		□ 1×10 ⁻	2	None		None			
	PUB			1		4	7.2>	10 ⁻⁵		□ 1×10 ⁻	5	1.4×10)-1	7.2			
				2		3	1.9>	10 ⁻⁴		□ 1×10 ⁻	4	5.3×10)-1	1.9			Ţ
5	Scenar	ios for Sel	ected	l Summa	tion				A T		Process Mode		■ Tank filling			<u> </u>	
			_							1111	Consequence		Description		Туре	Level	
	# [Description			IPL:			%					Overfill tank, TK-104		® PUB	ው1	
			_	scription	Тур		FD				Hazard Type		■ Explosion			₹	
	3 Ta	ank level	ъHi	gh level	∙ BIF	囤 1×1	0 ⁻¹ 69.	4			Events		Item		Type	Value	

	Description		IPLs			
#	Description	Description	Туре	PFD	%	
3	Tank level transmitter fails and overfill tank,	B High level shutoff for tank, TK- 104	® SIF	₪ 1×10 ⁻¹	69.4	
	TK-104, with explosion and public impacts.	 Operator action to stop pump, P- 100 	∎HUM	₪ 1×10 ⁻¹		
6	Tank level indicating controller fails and	B High level shutoff for tank, TK- 104	® SIF	∿ 1×10 ⁻¹	1.4	
	overfill tank, TK-104, with explosion and public impacts.	 Operator action to stop pump, P- 100 	₪ HUM	∙ 1×10 ⁻¹		
٥	Pump P-100	& High level	G SIF	в 1×10-1	27.8	

s Mode	● Tank filling						
quence	Description	Туре	Level				
	Overfill tank, TK-104 PUB						
Туре	■ Explosion	■ Explosion					
	Item	Type	Value				
	Initiating Event		Frequency				
	Level transmitter, LT TK-104, fails to detect high level	EQP	1×10 ⁻¹				
	Enablers (regular, at-risk factors, and con modifiers)	ditional	Value				
	Time in tank filling mode ARF						
	Lack of PM on level transmitter LT TK- 104	REG	5				
	Probability of ignition	CM	1×10 ⁻¹				
	Probability of personnel in affected area	з	1				
	Probability of harm from exposure						
	Independent Protection Layers						
	囤 1×10 ⁻¹						
	Operator action to stop pump, P-100	∙∎HUM	囤 1×10 ⁻¹				
	Safeguards (non-IPL)						
	Public evacuation	∙∎HUM					

ADJUSTED TOTAL RISK FOR PROCESS

Main	Iain Options Project Sessions LOPA LOPA Form LOPA Sheet Lists Summation Reports														
– R	Risk Summation Types														
Тур	ype: Consequence types how: All														
▼ R	Risk Summatio	ns													
	Consequence Typ	pe Conseq	uence Level	Scenario Count	Frequency		Risk Tolerance	Ri	isk Reduction Required	Risk R	eduction Fa	actor			
EM	P	1	(3	1.1×10 ⁻⁴	□ 1×1	0-3	None		None					
		2	9)	3.3×10 ⁻⁴	□ 1×1	0-2	None		None					
PU	В	1	4	1	8.1×10 ⁻⁸	□ 1×1	0-5	None		None					
		2	;	3	1.9×10 ⁻⁴	□ 1×1	0-4	5.3×10	-1	1.9					
													Ì		
Sce	narios for Sel	ected Summa	ation		A V	18	Process Mode		■ Tank filling		_	·			
	1		IPLs			10	Consequence		Description Overfill tank, TK-104	(b)	Type PUB	Level			
#	Description	Description	Type	PFD	~ ~ -	11	Hazard Type		Explosion	1	00				
3	Tank level	■ High level	∙∎SIF	⊡ 1×10 ⁻²	61.7	11	Events		Item		Туре	Value			
	transmitter	shutoff for				11			Initiating Event			Frequency			
	fails and overfill tank, TK-104, with	tank, TK- 104		⊡ 1×10 ⁻¹		Ш			Level transmitter, LT TK- detect high level	104, fails to	EQP	1×10 ⁻¹			
	explosion and public	Operator action to stop	∙∎HUM	49 1×10 ^{-,}		Ш			Enablers (regular, at-risk f modifiers)	factors, and con	ditional	Value			
	impacts.	pump, P-				11			Time in tank filling mode		ARF	1×10 ⁻¹			
6	Tank level	100	®SIF	№ 1×10 ⁻²	1.2	Ш			Lack of PM on level trans 104	mitter LT TK-	REG	5			
	indicating	shutoff for				11			Probability of ignition		CM	1×10 ⁻¹			
	controller fails and	tank, TK- 104				11			Probability of personnel i	n affected area	a	1			
	overfill tank,	■ Operator	⊛HUM	© 1×10 ⁻¹	-	11			Probability of harm from (1			
	TK-104, with	action to							Independent Protection	-		PFD			
	explosion and public	stop							High level shutoff for ta		® SIF	₪ 1×10 ⁻²			
	impacts.	pump, P- 100							Operator action to stop	pump, P-100	@ HUM	₪ 1×10 ⁻¹			
a	Pumn P-100		G SIF	Gh 1×10-2	24.7				Safeguards (non-IPL)		⊕HUM				
_						- 11			The rubic evacuation		a HOW		-		

RISK BREAKDOWN FOR PROCESS

▼ Risk Sum	Risk Summations														
Process M	Consequence Type	Consequence Leve	I Scenario Count	Frequency	Risk Tolerance	Risk Reduction Required	Risk Reduction Factor								
Tank filling	EMP	1	4	7.2×10 ⁻⁵	□ 1×10 ⁻³	None	None								
		2	4	1.8×10 ⁻⁵	□ 1×10 ⁻²	None	None								
	PUB	1	4	7.2×10 ⁻⁵	□ 1×10 ⁻⁵	1.4×10 ⁻¹	7.2								
Transfer	EMP	1	2	9.9×10 ⁻⁵	□ 1×10 ⁻³	None	None								
		2	5	3.3×10 ⁻⁴	□ 1×10 ⁻²	None	None								
	PUB	2	3	1.9×10 ⁻⁴	□ 1×10 ⁻⁴	5.3×10 ⁻¹	1.9								
▼ Risk Sum	▼ Risk Summations														
Hazard T	Consequence Type	Consequence Level	Scenario Count	Frequency	Risk Tolerance	Risk Reduction Required	Risk Reduction Factor								
Fire I	EMP	2	8 2	2.6×10 ⁻⁴	□ 1×10 ⁻²	None	None								
Explosion	EMP	1	6 1	1.7×10 ⁻⁴	□ 1×10 ⁻³	None	None								

		-	1.1.1.1.0	= 10.10			
	2	1	9×10 ⁻⁵	□ 1×10 ⁻²	None	None	
PUB	1	4	7.2×10 ⁻⁵	□ 1×10 ⁻⁵	1.4×10 ⁻¹	7.2	
	2	3	1.9×10 ⁻⁴	□ 1×10 ⁻⁴	5.3×10 ⁻¹	1.9	

▼ Risk Summations

Process	Hazard	Consequence Type	Consequence Level	Scenario Co	Frequency	Risk Tolerance	Risk Reduction Required	Risk Reduction Factor
Tank filling	Fire	EMP	2	4	1.8×10 ⁻⁵	□ 1×10 ⁻²	None	None
	Explosion	EMP	1	4	7.2×10 ⁻⁵	□ 1×10 ⁻³	None	None
		PUB	1	4	7.2×10 ⁻⁵	□ 1×10 ⁻⁵	1.4×10 ⁻¹	7.2
Transfer	Fire	EMP	2	4	2.4×10 ⁻⁴	□ 1×10 ⁻²	None	None
	Explosion	EMP	1	2	9.9×10 ⁻⁵	□ 1×10 ⁻³	None	None
			2	1	9×10 ⁻⁵	□ 1×10 ⁻²	None	None
24		PUB	2	3	1.9×10 ⁻⁴	□ 1×10 ⁻⁴	5.3×10 ⁻¹	1.9

CONCLUSIONS

- Various issues affect the use of LOPA for SIL determination
- A procedure was described that addresses the issues
 - Uses a risk model that allows the estimation of the risks posed to receptors by:
 - Overall facility
 - Contributions from processes, units and operating modes

PrimaTech