ADDRESSING ISSUES IN THE DESIGN AND USE OF RISK MATRICES IN PROCESS SAFETY

by Paul Baybutt

paulb@primatech.com www.primatech.com

Presented at the American Institute of Chemical Engineers 11th Global Congress on Process Safety Austin, Texas

April 26-29, 2015

RISK MATRICES IN PROCESS SAFETY

- Used to rate and rank risks
 - E.g. in PHA
- No standards
- No validation
- Apparently simple (deceptive!)
- Easy to use (incorrectly)
- Many pitfalls

CONTENTS OF PAPER

- Issues with risk matrices
 - Framework is flawed
 - Must be calibrated
 - Hazard scenarios or hazardous events
 - Do not address risk uncertainties
 - Use subjective judgment
- Guidelines for design
- Guidelines for use

ISSUE 1 - FLAWED FRAMEWORK

- Underlying assumption:
 - Cells in risk matrix define ranges of risk values that are mutually exclusive
 - Except N x M = M x N
 - Not true!

L/S	1	2	3	4
4	4	8	12	16
3	3	6	9	12
2	2	4	6	8
1	1	2	3	4

L = Likelihood S = Severity

FLAWED FRAMEWORK (CONTD.)

- S's and L's are defined by ranges of values
- R = S x L
- Linear axes are a problem

ADDRESING FLAWED FRAMEWORK

Use logarithmic axes

Risk Level	Meaning	
Ι	Unacceptable	
II	Undesirable	
III	Acceptable with controls	
IV	Acceptable as is	

ISSUE 2 - MATRICES MUST BE CALIBRATED

- Many companies calibrate risk matrices
 - Adjust required risk reduction measures with reference to risk tolerance criteria
 - Allocate risk tolerance criteria to hazard scenarios

L\S	1	2	3	4
4	4	8	12	16
3	3	6	9	12
2	2	4	6	8
1	1	2	3	4

E.g. facility individual fatality risk tolerance criterion = 1 x 10⁻⁴ per year

EXAMPLE OF A RISK MATRIX FOR INDIVIDUAL RISK

Severity level	Meaning	
1	First-aid case	
2	Lost-time injury	
3	Hospitalization	
4	Fatality	

Likelihood level	Meaning (Frequency per year)		
1	≤ 5 x 10 ⁻⁵		
2	≤ 5 x 10 ⁻⁴		
3	≤ 5 x 10 ⁻³		
4	≤ 5 x 10 ⁻²		
5	≤ 5 x 10 ⁻¹		

Severity level	1	2	3	4
Likelihood level				
5	1	2	3	4
4	TR	1	2	3
3	TR	TR	1	2
2	TR	TR	TR	1
1	TR	TR	TR	TR

TR = Tolerable risk

Numerical values in the risk matrix denote required risk reductions as negative exponents of powers of 10. Thus, 3 equates to a required risk reduction of 1×10^{-3} .

EXAMPLE OF A RISK MATRIX FOR GROUP RISK

Severity level	Meaning
1	One fatality
2	≤ Ten fatalities
3	≤ 100 fatalities
4	≤ 1,000 fatalities

Likelihood level	Meaning (Frequency per year)
1	≤ 1 x 10 ⁻⁸
2	≤ 1 x 10 ⁻⁷
3	≤ 1 x 10 ⁻⁶
4	≤ 1 x 10 ⁻⁵
5	≤ 1 x 10 ⁻⁴
6	≤ 1 x 10 ⁻³
7	≤ 1 x 10 ⁻²

Severity level	1	2	3	4
Likelihood level				
7	3	4	5	6
6	2	3	4	5
5	1	2	3	4
4	TR	1	2	3
3	TR	TR	1	2
2	TR	TR	TR	1
1	TR	TR	TR	TR

TR = Tolerable risk

Numerical values in the risk matrix denote required risk reductions as negative exponents of powers of 10. Thus, 3 equates to a required risk reduction of 1×10^{-3} .

ISSUE 3 - RISK MATRICES AND UNCERTAINTIES

Note: Conceptual, not to scale. Levels are intended to differ by orders of magnitude.

ISSUE 4 - SUBJECTIVE JUDGMENT

- Risk ranking is a subjective process
 - Depends on analyst opinions
 - Subject to psychological factors
 - ► Heuristics and cognitive biases. E. g., people
 - Underestimate the probability of an event they have not experienced
 - Overestimate the probability of an event they have experienced
 - Many such biases affect risk ranking

KEY GUIDELINES FOR DESIGN

- Severity and likelihood levels
 - Overall ranges
 - Number
 - Definitions
- Risk levels
 - Number
 - Assignment
 - Decision requirements

CONCLUSIONS

- Risk matrices are deceptively simple
 - Numerous pitfalls exist for unwary users
- Guidelines have been provided for their design and use
- Provide only an approximate estimate of risk
 - Use with caution and common sense
- More quantitative methods may be merited
 - LOPA and QRA